Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Immunol Rev ; 313(1): 15-24, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316810

RESUMEN

Complement factor D (FD) is a serine protease that plays an essential role in the activation of the alternative pathway (AP) by cleaving complement factor B (FB) and generating the C3 convertases C3(H2 O)Bb and C3bBb. FD is produced mainly from adipose tissue and circulates in an activated form. On the contrary, the other serine proteases of the complement system are mainly synthesized in the liver. The activation mechanism of FD has long been unknown. Recently, a serendipitous discovery in the mechanism of FD activation has been provided by a generation of Masp1 gene knockout mice lacking both the serine protease MASP-1 and its alternative splicing variant MASP-3, designated MASP-1/3-deficient mice. Sera from the MASP-1/3-deficient mice had little-to-no lectin pathway (LP) and AP activity with circulating zymogen or proenzyme FD (pro-FD). Sera from patients with 3MC syndrome carrying mutations in the MASP1 gene also had circulating pro-FD, suggesting that MASP-1 and/or MASP-3 are involved in activation of FD. Here, we summarize the current knowledge of the mechanism of FD activation that was finally elucidated using the sera of mice monospecifically deficient for MASP-1 or MASP-3. Sera of the MASP-1-deficient mice lacked LP activity, but those of the MASP-3-deficient mice lacked AP activity with pro-FD. This review illustrates the pivotal role of MASP-3 in the physiological activation of the AP via activation of FD.


Asunto(s)
Factor D del Complemento , Vía Alternativa del Complemento , Humanos , Animales , Ratones , Factor D del Complemento/genética , Factor D del Complemento/metabolismo , Vía Alternativa del Complemento/fisiología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Proteínas del Sistema Complemento , Ratones Noqueados
2.
Front Immunol ; 13: 907023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052069

RESUMEN

The complement system plays an important role in host defense and is activated via three different activation pathways. We have previously reported that mannose-binding lectin-associated serine protease (MASP)-3, unlike its splicing variant MASP-1, circulates in an active form and is essential for the activation of the alternative pathway (AP) via the activation of complement factor D (FD). On the other hand, like MASP-1 and MASP-2 of the lectin pathway (LP), MASP-3 forms a complex with the pattern recognition molecules (PRMs) of the LP (LP-PRMs). Both MASP-1 and MASP-2 can be activated efficiently when the LP-PRMs complexed with them bind to their ligands. On the other hand, it remains unclear how MASP-3 is activated, or whether complex formation of MASP-3 with LP-PRMs is involved in activation of MASP-3 or its efficiency in the circulation. To address these issues, we generated wild-type (WT) and four mutant recombinant mouse MASP-3 proteins fused with PA (human podoplanin dodecapeptide)-tag (rmMASP-3-PAs), the latter of which have single amino acid substitution for alanine in the CUB1 or CUB2 domain responsible for binding to LP-PRMs. The mutant rmMASP-3-PAs showed significantly reduced in-vivo complex formation with LP-PRMs when compared with WT rmMASP-3-PA. In the in-vivo kinetic analysis of MASP-3 activation, both WT and mutant rmMASP-3-PAs were cleaved into the active forms as early as 30 minutes in the circulation of mice, and no significant difference in the efficiency of MASP-3 cleavage was observed throughout an observation period of 48 hours after intravenous administration. All sera collected 3 hours after administration of each rmMASP-3-PA showed full restoration of the active FD and AP activity in MASP-3-deficient mouse sera at the same levels as WT mouse sera. Unexpectedly, all mutant rmMASP-3-PAs showed faster clearance from the circulation than the WT rmMASP-3-PA. To our knowledge, the current study is the first to show in-vivo kinetics of MASP-3 demonstrating rapid activation and clearance in the circulation. In conclusion, our results demonstrated that the complex formation of MASP-3 with LP-PRMs is not required for in-vivo activation of MASP-3 or its efficiency, but may contribute to the long-term retention of MASP-3 in the circulation.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Animales , Lectina de Unión a Manosa de la Vía del Complemento/fisiología , Proteínas del Sistema Complemento , Humanos , Cinética , Lectinas/genética , Lectinas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ratones , Mutación , Proteínas Recombinantes/metabolismo
3.
Exp Hematol Oncol ; 10(1): 57, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34924021

RESUMEN

Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a life-threatening syndrome that occurs in adult and pediatric patients after hematopoietic stem cell transplantation. Nonspecific symptoms, heterogeneity within study populations, and variability among current diagnostic criteria contribute to misdiagnosis and underdiagnosis of this syndrome. Hematopoietic stem cell transplantation and associated risk factors precipitate endothelial injury, leading to HSCT-TMA and other endothelial injury syndromes such as hepatic veno-occlusive disease/sinusoidal obstruction syndrome, idiopathic pneumonia syndrome, diffuse alveolar hemorrhage, capillary leak syndrome, and graft-versus-host disease. Endothelial injury can trigger activation of the complement system, promoting inflammation and the development of endothelial injury syndromes, ultimately leading to organ damage and failure. In particular, the lectin pathway of complement is activated by damage-associated molecular patterns (DAMPs) on the surface of injured endothelial cells. Pattern-recognition molecules such as mannose-binding lectin (MBL), collectins, and ficolins-collectively termed lectins-bind to DAMPs on injured host cells, forming activation complexes with MBL-associated serine proteases 1, 2, and 3 (MASP-1, MASP-2, and MASP-3). Activation of the lectin pathway may also trigger the coagulation cascade via MASP-2 cleavage of prothrombin to thrombin. Together, activation of complement and the coagulation cascade lead to a procoagulant state that may result in development of HSCT-TMA. Several complement inhibitors targeting various complement pathways are in clinical trials for the treatment of HSCT-TMA. In this article, we review the role of the complement system in HSCT-TMA pathogenesis, with a focus on the lectin pathway.

4.
FASEB J ; 34(5): 6598-6612, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32219899

RESUMEN

Inhibition of the complement activation has emerged as an option for treatment of a range of diseases. Activation of the lectin and alternative pathways (LP and AP, respectively) contribute to the deterioration of conditions in certain diseases such as ischemia-reperfusion injuries and age-related macular degeneration (AMD). In the current study, we generated dual complement inhibitors of the pathways MAp44-FH and sMAP-FH by fusing full-length MAp44 or small mannose-binding lectin-associated protein (sMAP), LP regulators, with the N-terminal five short consensus repeat (SCR) domains of complement factor H (SCR1/5-FH), an AP regulator. The murine forms of both fusion proteins formed a complex with endogenous mannose-binding lectin (MBL) or ficolin A in the circulation when administered in mice intraperitoneally. Multiple complement activation assays revealed that sMAP-FH had significantly higher inhibitory effects on activation of the LP and AP in vivo as well as in vitro compared to MAp44-FH. Human form of sMAP-FH also showed dual inhibitory effects on LP and AP activation in human sera. Our results indicate that the novel fusion protein sMAP-FH inhibits both the LP and AP activation in mice and in human sera, and could be an effective therapeutic agent for diseases in which both the LP and AP activation are significantly involved.


Asunto(s)
Inactivadores del Complemento/metabolismo , Vía Alternativa del Complemento/inmunología , Lectinas/inmunología , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Activación de Complemento/inmunología , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Inactivadores del Complemento/inmunología , Femenino , Humanos , Lectinas/metabolismo , Lectina de Unión a Manosa/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Ratones , Ratones Endogámicos C57BL
6.
J Immunol ; 203(6): 1411-1416, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31399515

RESUMEN

The complement system, a part of the innate immune system, can be activated via three different pathways. In the alternative pathway, a factor D (FD) plays essential roles in both the initiation and the amplification loop and circulates as an active form. Mannose-binding lectin-associated serine proteases (MASPs) are key enzymes of the lectin pathway, and MASP-1 and/or MASP-3 are reported to be involved in the activation of FD. In the current study, we generated mice monospecifically deficient for MASP-1 or MASP-3 and found that the sera of the MASP-1-deficient mice lacked lectin pathway activity, but those of the MASP-3-deficient mice lacked alternative pathway activity with a zymogen FD. Furthermore, the results indicate that MASP-3 but not MASP-1 activates the zymogen FD under physiological conditions and MASP-3 circulates predominantly as an active form. Therefore, our study illustrates that, in mice, MASP-3 orchestrates the overall complement reaction through the activation of FD.


Asunto(s)
Factor D del Complemento/inmunología , Vía Alternativa del Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Animales , Activación de Complemento/inmunología , Lectina de Unión a Manosa de la Vía del Complemento/inmunología , Femenino , Sistema Inmunológico/inmunología , Lectinas/inmunología , Ratones , Ratones Endogámicos C57BL
7.
Immunohorizons ; 2(8): 274-295, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30417171

RESUMEN

Mannan-binding lectin-associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essential for the development of joint damage and that targeted inhibition of MASP-3 in the liver can attenuate arthritis. We used MASP-3-specific small interfering RNAs (siRNAs) conjugated to N-acetylgalactosamine (GalNAc) to specifically target the liver via asialoglycoprotein receptors. Active GalNAc-MASP3-siRNA conjugates were identified, and in vivo silencing of liver MASP-3 mRNA was demonstrated in healthy mice. The s.c. treatment with GalNAc-MASP-3-siRNAs specifically decreased the expression of MASP-3 in the liver and the level of MASP-3 protein in circulation of mice without affecting the levels of the other spliced products. In mice with collagen Ab-induced arthritis, s.c. administration of GalNAc-MASP-3-siRNA decreased the clinical disease activity score to 50% of controls, with decrease in histopathology scores and MASP-3 deposition. To confirm the ability to perform MASP-3 gene silencing in human cells, we generated a lentivirus expressing a short hairpin RNA specific for human MASP-3 mRNA. This procedure not only eliminated the short-term (at day 15) expression of MASP-3 in HepG2 and T98G cell lines but also diminished the long-term (at day 60) synthesis of MASP-3 protein in T98G cells. Our study demonstrates that isoform-specific silencing of MASP-3 in vivo modifies disease activity in a mouse model of RA and suggests that liver-directed MASP3 silencing may be a therapeutic approach in human RA.

8.
Front Immunol ; 9: 1191, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892304

RESUMEN

The complement system, composed of the three activation pathways, has both protective and pathogenic roles in the development of systemic lupus erythematosus (or lupus), a prototypic autoimmune disease. The classical pathway contributes to the clearance of immune complexes (ICs) and apoptotic cells, whereas the alternative pathway (AP) exacerbates renal inflammation. The role of the lectin pathway (LP) in lupus has remained largely unknown. Mannose-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with humoral pattern recognition molecules (MBL or ficolins), are the enzymatic constituents of the LP and AP. MASP-1 encoded by the Masp1 gene significantly contributes to the activation of the LP. After the binding of MBL/ficolins to pathogens or self-altered cells, MASP-1 autoactivates first, then activates MASP-2, and both participate in the formation of the LP C3 convertase C4b2a, whereas, MASP-3, the splice variant of the Masp1 gene, is required for the activation of the zymogen of factor D (FD), and finally participates in the formation of the AP C3 convertase C3bBb. To investigate the roles of MASP-1 and MASP-3 in lupus, we generated Masp1 gene knockout lupus-prone MRL/lpr mice (Masp1/3-/- MRL/lpr mice), lacking both MASP-1 and MASP-3, and analyzed their renal disease. As expected, sera from Masp1/3-/- MRL/lpr mice had no or markedly reduced activation of the LP and AP with zymogen forms of complement FD. Compared to their wild-type littermates, the Masp1/3-/- MRL/lpr mice had maintained serum C3 levels, little-to-no albuminuria, as well as significantly reduced glomerular C3 deposition levels and glomerular pathological score. On the other hand, there were no significant differences in the levels of serum anti-dsDNA antibody, circulating ICs, glomerular IgG and MBL/ficolins deposition, renal interstitial pathological score, urea nitrogen, and mortality between the wild-type and Masp1/3-/- MRL/lpr mice. Our data indicate that MASP-1/3 plays essential roles in the development of lupus-like glomerulonephritis in MRL/lpr mice, most likely via activation of the LP and/or AP.


Asunto(s)
Vía Alternativa del Complemento/inmunología , Lectina de Unión a Manosa de la Vía del Complemento/inmunología , Nefritis Lúpica/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Animales , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/inmunología , Vía Alternativa del Complemento/genética , Lectina de Unión a Manosa de la Vía del Complemento/genética , Nefritis Lúpica/genética , Nefritis Lúpica/patología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Ratones , Ratones Endogámicos MRL lpr , Ratones Noqueados
9.
J Immunol ; 199(5): 1835-1845, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28739878

RESUMEN

Complement plays an important role in the pathogenesis of rheumatoid arthritis. Although the alternative pathway (AP) is known to play a key pathogenic role in models of rheumatoid arthritis, the importance of the lectin pathway (LP) pattern recognition molecules such as ficolin (FCN) A, FCN B, and collectin (CL)-11, as well as the activating enzyme mannose-binding lectin-associated serine protease-2 (MASP-2), are less well understood. We show in this article that FCN A-/- and CL-11-/- mice are fully susceptible to collagen Ab-induced arthritis (CAIA). In contrast, FCN B-/- and MASP-2-/-/sMAp-/- mice are substantially protected, with clinical disease activity decreased significantly (p < 0.05) by 47 and 70%, respectively. Histopathology scores, C3, factor D, FCN B deposition, and infiltration of synovial macrophages and neutrophils were similarly decreased in FCN B-/- and MASP-2-/-/sMAp-/- mice. Our data support that FCN B plays an important role in the development of CAIA, likely through ligand recognition in the joint and MASP activation, and that MASP-2 also contributes to the development of CAIA, likely in a C4-independent manner. Decreased AP activity in the sera from FCN B-/- and MASP-2-/-/sMAp-/- mice with arthritis on adherent anti-collagen Abs also support the hypothesis that pathogenic Abs, as well as additional inflammation-related ligands, are recognized by the LP and operate in vivo to activate complement. Finally, we also speculate that the residual disease seen in our studies is driven by the AP and/or the C2/C4 bypass pathway via the direct cleavage of C3 through an LP-dependent mechanism.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Lectina de Unión a Manosa de la Vía del Complemento , Inflamación/inmunología , Lectinas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Células Cultivadas , Colágeno/inmunología , Colectinas/genética , Colectinas/metabolismo , Proteínas del Sistema Complemento/metabolismo , Humanos , Lectinas/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ficolinas
10.
FASEB J ; 31(5): 2210-2219, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28188176

RESUMEN

All 3 activation pathways of complement-the classic pathway (CP), the alternative pathway, and the lectin pathway (LP)- converge into a common central event: the cleavage and activation of the abundant third complement component, C3, via formation of C3-activating enzymes (C3 convertases). The fourth complement component, C4, and the second component, C2, are indispensable constituents of the C3 convertase complex, C4bC2a, which is formed by both the CP and the LP. Whereas in the absence of C4, CP can no longer activate C3, LP retains a residual but physiologically critical capacity to convert native C3 into its activation fragments, C3a and C3b. This residual C4 and/or C2 bypass route is dependent on LP-specific mannan-binding lectin-associated serine protease-2. By using various serum sources with defined complement deficiencies, we demonstrate that, under physiologic conditions LP-specific C4 and/or C2 bypass activation of C3 is mediated by direct cleavage of native C3 by mannan-binding lectin-associated serine protease-2 bound to LP-activation complexes captured on ligand-coated surfaces.-Yaseen, S., Demopulos, G., Dudler, T., Yabuki, M., Wood, C. L., Cummings, W. J., Tjoelker, L. W., Fujita, T., Sacks, S., Garred, P., Andrew, P., Sim, R. B., Lachmann, P. J., Wallis, R., Lynch, N., Schwaeble, W. J. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2.


Asunto(s)
Activación de Complemento/fisiología , Complemento C2/metabolismo , Complemento C3/metabolismo , Complemento C4/metabolismo , Lectinas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Humanos
11.
J Immunol ; 197(9): 3680-3694, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707997

RESUMEN

The complement system is proposed to play an important role in the pathogenesis of rheumatoid arthritis (RA). The complement system mannan-binding lectin-associated serine proteases (MASP)-1/3 cleave pro-factor D (proDf; inactive) into Df (active), but it is unknown where this cleavage occurs and whether inhibition of MASP-1/3 is a relevant therapeutic strategy for RA. In the present study, we show that the cleavage of proDf into Df by MASP-1/3 can occur in the circulation and that inhibition of MASP-1/3 by gene silencing is sufficient to ameliorate collagen Ab-induced arthritis in mice. Specifically, to examine the cleavage of proDf into Df, MASP-1/3-producing Df-/- liver tissue (donor) was transplanted under the kidney capsule of MASP-1/3-/- (recipient) mice. Five weeks after the liver transplantation, cleaved Df was present in the circulation of MASP-1/3-/- mice. To determine the individual effects of MASP-1/3 and Df gene silencing on collagen Ab-induced arthritis, mice were injected with scrambled, MASP-1/3-targeted, or Df-targeted small interfering RNAs (siRNAs). The mRNA levels for MASP-1 and -3 decreased in the liver to 62 and 58%, respectively, in mice injected with MASP-1/3 siRNAs, and Df mRNA decreased to 53% in the adipose tissue of mice injected with Df siRNAs; additionally, circulating MASP-1/3 and Df protein levels were decreased. In mice injected with both siRNAs the clinical disease activity, histopathologic injury scores, C3 deposition, and synovial macrophage/neutrophil infiltration were significantly decreased. Thus, MASP-1/3 represent a new therapeutic target for the treatment of RA, likely through both direct effects on the lectin pathway and indirectly through the alternative pathway.


Asunto(s)
Artritis Experimental/terapia , Artritis Reumatoide/terapia , Factor D del Complemento/metabolismo , Lectina de Unión a Manosa de la Vía del Complemento , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Interferencia de ARN , Animales , Artritis Experimental/genética , Artritis Reumatoide/genética , Factor D del Complemento/genética , Humanos , Masculino , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteolisis , ARN Interferente Pequeño/genética
12.
J Neuroinflammation ; 13(1): 213, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27577570

RESUMEN

BACKGROUND: Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. This work defines the contributions of each of the three LP-associated enzymes-mannan-binding lectin-associated serine protease (MASP)-1, MASP-2, and MASP-3-to ischemic brain injury in experimental mouse models of stroke. METHODS: Focal cerebral ischemia was induced in wild-type (WT) mice or mice deficient for defined complement components by transient middle cerebral artery occlusion (tMCAO) or three-vessel occlusion (3VO). The inhibitory MASP-2 antibody was administered systemically 7 and 3.5 days before and at reperfusion in WT mice in order to assure an effective MASP-2 inhibition throughout the study. Forty-eight hours after ischemia, neurological deficits and infarct volumes were assessed. C3 deposition and microglia/macrophage morphology were detected by immunohistochemical, immunofluorescence, and confocal analyses. RESULTS: MASP-2-deficient mice (MASP-2(-/-)) and WT mice treated with an antibody that blocks MASP-2 activity had significantly reduced neurological deficits and histopathological damage after transient ischemia and reperfusion compared to WT or control-treated mice. Surprisingly, MASP-1/3(-/-) mice were not protected, while mice deficient in factor B (fB(-/-)) showed reduced neurological deficits compared to WT mice. Consistent with behavioral and histological data, MASP-2(-/-) had attenuated C3 deposition and presented with a significantly higher proportion of ramified, surveying microglia in contrast to the hypertrophic pro-inflammatory microglia/macrophage phenotype seen in the ischemic brain tissue of WT mice. CONCLUSIONS: This work demonstrates the essential role of the low-abundant MASP-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2.


Asunto(s)
Lesiones Encefálicas/enzimología , Isquemia Encefálica/enzimología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Lesiones Encefálicas/patología , Isquemia Encefálica/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Acta Derm Venereol ; 96(6): 748-53, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-26912390

RESUMEN

There has been no previous systematic study of bullous skin diseases with granular basement membrane zone deposition exclusively of C3. In this study we collected 20 such patients, none of whom showed cutaneous vasculitis histopathologically. Oral dapsone and topical steroids were effective. Various serological tests detected no autoantibodies or autoantigens. Direct immunofluorescence for various complement components revealed deposition only of C3 and C5-C9, indicating that no known complement pathways were involved. Studies of in situ hybridization and micro-dissection with quantitative RT-PCR revealed a slight reduction in expression of C3 in patient epidermis. These patients may represent a new disease entity, for which we propose the term "granular C3 dermatosis". The mechanism for granular C3 deposition in these patients is unknown, but it is possible that the condition is caused by autoantibodies to skin or aberrant C3 expression in epidermal keratinocytes.


Asunto(s)
Membrana Basal/metabolismo , Complemento C3/metabolismo , Dermatitis Herpetiforme/metabolismo , Enfermedades Cutáneas Vesiculoampollosas/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antiinfecciosos/uso terapéutico , Niño , Dapsona/uso terapéutico , Dermatitis Herpetiforme/tratamiento farmacológico , Dermatitis Herpetiforme/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente Directa , Humanos , Immunoblotting , Hibridación in Situ , Japón , Queratinocitos/metabolismo , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedades Cutáneas Vesiculoampollosas/tratamiento farmacológico , Enfermedades Cutáneas Vesiculoampollosas/patología , Esteroides/uso terapéutico
15.
Nat Commun ; 6: 8483, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404464

RESUMEN

The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6(-/-) mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6(-/-) mice and C1qtnf6(-/-) embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H2O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases.


Asunto(s)
Adipoquinas/inmunología , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Vía Alternativa del Complemento/inmunología , Adipoquinas/genética , Adulto , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Reacción de Arthus/genética , Reacción de Arthus/inmunología , Reacción de Arthus/metabolismo , Western Blotting , Colágeno/inmunología , Colágeno/metabolismo , Convertasas de Complemento C3-C5/inmunología , Complemento C3a/inmunología , Complemento C5a/inmunología , Vía Alternativa del Complemento/genética , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Citometría de Flujo , Humanos , Inmunoprecipitación , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Membrana Sinovial/citología , Membrana Sinovial/metabolismo
16.
Int Rev Cell Mol Biol ; 316: 49-110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25805122

RESUMEN

In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.


Asunto(s)
Inmunidad Innata/fisiología , Lectinas/fisiología , Acetilglucosamina/química , Secuencia de Aminoácidos , Animales , Carbohidratos/química , Colágeno/química , Citocinas/metabolismo , Fibrinógeno/química , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Sistema Inmunológico , Lectina de Unión a Manosa/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Ratones , Datos de Secuencia Molecular , Fagocitosis , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Ficolinas
17.
Inflammation ; 38(2): 828-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25117566

RESUMEN

Secretoglobin (SCGB) 3A2, previously known as uteroglobin-related protein 1, is a secreted protein highly expressed in the epithelial cells of the airways. It has been demonstrated that SCGB3A2 is involved in allergic airway inflammation such as bronchial asthma. However, the role of SCGB3A2 in lipopolysaccharide (LPS)-induced airway inflammation has yet to be reported. The goal of this study was therefore to clarify the role of SCGB3A2 in LPS-induced airway inflammation. We stimulated BEAS-2B, human bronchial epithelial cells, with LPS and analyzed messenger RNA (mRNA) expression of tumor necrosis factor (TNF)-α and CXCL8 with or without pre-incubation of SCGB3A2. The mRNA expression of TNF-α and CXCL8 was clearly upregulated 3 h after LPS stimulation, and pre-incubation of SCGB3A2 significantly inhibited the upregulation of the mRNA expression. The pre-incubation of SCGB3A2 also inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase in BEAS-2B cells. Furthermore, PD98059, a specific inhibitor for ERK, as well as SP600125, a specific inhibitor for JNK, inhibited LPS-induced mRNA upregulation of inflammatory mediators. These results demonstrate the novel biological activity of SCGB3A2, which is that it attenuates LPS-induced inflammation in bronchial epithelial cells through inhibition of ERK and JNK activation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Mucosa Respiratoria/enzimología , Secretoglobinas/farmacología , Línea Celular , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/enzimología , Inflamación/prevención & control , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Secretoglobinas/biosíntesis
18.
Mol Immunol ; 61(2): 59-68, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25060538

RESUMEN

The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from studies of these.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento/fisiología , Animales , Humanos , Lectinas/genética , Lectinas/metabolismo , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ratones , Ratones Noqueados , Ficolinas
20.
Mol Immunol ; 60(1): 80-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769495

RESUMEN

Trypanosoma cruzi, the agent of Chagas' disease, the sixth neglected tropical disease worldwide, infects 10-12 million people in Latin America. Differently from T. cruzi epimastigotes, trypomastigotes are complement-resistant and infective. CRPs, T-DAF, sialic acid and lipases explain at least part of this resistance. In vitro, T. cruzi calreticulin (TcCRT), a chaperone molecule that translocates from the ER to the parasite surface: (a) Inhibits the human classical complement activation, by interacting with C1, (b) As a consequence, an increase in infectivity is evident and, (c) It inhibits angiogenesis and tumor growth. We report here that TcCRT also binds to the L-Ficolin collagenous portion, thus inhibiting approximately between 35 and 64% of the human complement lectin pathway activation, initiated by L-Ficolin, a property not shared by H-Ficolin. While L-Ficolin binds to 60% of trypomastigotes and to 24% of epimastigotes, 50% of the former and 4% of the latter display TcCRT on their surfaces. Altogether, these data indicate that TcCRT is a parasite inhibitory receptor for Ficolins. The resulting evasive activities, together with the TcCRT capacity to inhibit C1, with a concomitant increase in infectivity, may represent T. cruzi strategies to inhibit important arms of the innate immune response.


Asunto(s)
Calreticulina/metabolismo , Activación de Complemento/inmunología , Complemento C1q/inmunología , Lectinas/metabolismo , Trypanosoma cruzi/inmunología , Sitios de Unión/inmunología , Calreticulina/inmunología , Enfermedad de Chagas/inmunología , Interacciones Huésped-Parásitos/inmunología , Humanos , Lectinas/inmunología , Unión Proteica/inmunología , Ficolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...